Forecasting Financial Extremes: A Network Degree Measure of Super-Exponential Growth
نویسندگان
چکیده
Investors in stock market are usually greedy during bull markets and scared during bear markets. The greed or fear spreads across investors quickly. This is known as the herding effect, and often leads to a fast movement of stock prices. During such market regimes, stock prices change at a super-exponential rate and are normally followed by a trend reversal that corrects the previous overreaction. In this paper, we construct an indicator to measure the magnitude of the super-exponential growth of stock prices, by measuring the degree of the price network, generated from the price time series. Twelve major international stock indices have been investigated. Error diagram tests show that this new indicator has strong predictive power for financial extremes, both peaks and troughs. By varying the parameters used to construct the error diagram, we show the predictive power is very robust. The new indicator has a better performance than the LPPL pattern recognition indicator.
منابع مشابه
A Neural-Network Approach to the Modeling of the Impact of Market Volatility on Investment
In recent years, authors have focused on modeling and forecasting volatility in financial series it is crucial for the characterization of markets, portfolio optimization and asset valuation. One of the most used methods to forecast market volatility is the linear regression. Nonetheless, the errors in prediction using this approach are often quite high. Hence, continued research is conducted t...
متن کاملA Divergence Measure for Combining Super-Efficiency Scores in Performance Measurement of Two-Stage Production Systems
In the conventional data envelopment analysis (DEA) internal sub-processes of the production units are ignored. The current paper develops a network-DEA super-efficiency model to compare the performance of efficient network systems. A new ranking method is developed by aggregating the computed super-efficiency scores with a J-divergence measure. The proposed approach is then applied to evaluate...
متن کاملPresenting a model for Multiple-step-ahead-Forecasting of volatility and Conditional Value at Risk in fossil energy markets
Fossil energy markets have always been known as strategic and important markets. They have a significant impact on the macro economy and financial markets of the world. The nature of these markets are accompanied by sudden shocks and volatility in the prices. Therefore, they must be controlled and forecasted by using appropriate tools. This paper adopts the Generalized Auto Regressive Condition...
متن کاملThe Impact of Forecasting Methods Combination for Reducing Bullwhip Effect in a Four-level Supply Chain under Variable Demand
Bullwhip effect in a supply chain, makes inefficiencies such as excess inventory and overdue orders during the chain. These problems can be reduced by appropriate predictions. Forecasting must be done in all levels of a supply chain. This research addresses the problem of optimal combination of forecasting to reduce the bullwhip effect in a four-level supply chain when demand is variable. For t...
متن کاملForecasting Gold Price Changes: Application of an Equipped Artificial Neural Network
The forecast of fluctuations and prices is the major concern in financial markets. Thus, developing an accurate and robust forecasting decision model is critically favorable to the investors. As gold has shown a special capability to smooth inflation fluctuations, governors use gold as a price controlling lever. Thus, more information about future gold price trends will help to make the firm de...
متن کامل